Telegram Group & Telegram Channel
Почему однопоточный Redis такой быстрый?

В прошлом посте предложила вам задачку: сравнить Redis и велосипедик на основе ConcurrentHashMap + Spring MVC.

ConcurrentHashMap — многопоточный, и вроде должен быть лучше. Но именно однопоточный Redis является базовым выбором для кэша.

Как однопоточный Redis справляется с нагрузкой?

Секрет в том, как он работает с запросами. Есть 2 основные модели:

🌊 Каждый запрос обрабатывается в своем потоке (thread per request).

Такая модель используется, когда мы подключаем Spring MVC. Наш велосипедик тоже на ней работает.

У каждого потока свой стэк, переменные изолированы. Код легко писать, читать и дебажить. Идеальный вариант для сложных энтерпрайзных задач!

Но есть недостаток - число запросов в работе ограничено числом потоков в ОС. Обычно это несколько тысяч.

Из-за этой модели наш велосипед и проигрывает:
😒 Миллионы запросов просто не дойдут до ConcurrentHashMap, максимум несколько тысяч.
😒 Прочитать и записать в мэп - простые операции. Отправлять таких малышей в отдельный поток - как забивать краном гвозди. Очень большие накладные расходы на каждый запрос.

Redis использует другую модель:

🏃 EventLoop - малое число потоков бешено переключаются между запросами. В работу можно взять миллионы запросов!

Такая схема используется в реактивных серверах типа Netty, поддерживает многопоточность в JS и питоне.

Поэтому Redis и побеждает наш велосипед: возни с потоками нет, ограничений на запросы нет. Вся мощь процессора уходит на полезную работу, поэтому даже один поток справляется с большим объемом задач.

Можно ли взять лучшее из двух миров? Использовать многопоточность вместе с EventLoop?

Можно! Один поток Redis не использует все доступные ядра процессора, поэтому добавить десяток потоков - вполне рабочая идея.

Такую схему используют KeyDB и DragonflyDB. На сайте публикуют бенчмарки, где они обходят Redis в 5-25 раз. 25 раз звучит слишком мощно, но про 5-10 раз можно верить.

Почему чаще используется Redis, а не более быстрые альтернативы?

Потому что Redis появился в 2009, используется на сотнях проектов и закрепился в сознании как базовое решение для кэша. Подводные камни известны, инфраструктура налажена, куча статей и докладов.

KeyDB и DragonflyDB - свежие БД пирожки. Один вышел в 19 году, другой в 22. На конференциях особо не светились, громких кейсов внедрения пока нет.

Энтерпрайз мир тяжело принимает новые технологии. Плюс не всегда нужно лучшее решение, иногда достаточно хорошего😊



tg-me.com/java_fillthegaps/612
Create:
Last Update:

Почему однопоточный Redis такой быстрый?

В прошлом посте предложила вам задачку: сравнить Redis и велосипедик на основе ConcurrentHashMap + Spring MVC.

ConcurrentHashMap — многопоточный, и вроде должен быть лучше. Но именно однопоточный Redis является базовым выбором для кэша.

Как однопоточный Redis справляется с нагрузкой?

Секрет в том, как он работает с запросами. Есть 2 основные модели:

🌊 Каждый запрос обрабатывается в своем потоке (thread per request).

Такая модель используется, когда мы подключаем Spring MVC. Наш велосипедик тоже на ней работает.

У каждого потока свой стэк, переменные изолированы. Код легко писать, читать и дебажить. Идеальный вариант для сложных энтерпрайзных задач!

Но есть недостаток - число запросов в работе ограничено числом потоков в ОС. Обычно это несколько тысяч.

Из-за этой модели наш велосипед и проигрывает:
😒 Миллионы запросов просто не дойдут до ConcurrentHashMap, максимум несколько тысяч.
😒 Прочитать и записать в мэп - простые операции. Отправлять таких малышей в отдельный поток - как забивать краном гвозди. Очень большие накладные расходы на каждый запрос.

Redis использует другую модель:

🏃 EventLoop - малое число потоков бешено переключаются между запросами. В работу можно взять миллионы запросов!

Такая схема используется в реактивных серверах типа Netty, поддерживает многопоточность в JS и питоне.

Поэтому Redis и побеждает наш велосипед: возни с потоками нет, ограничений на запросы нет. Вся мощь процессора уходит на полезную работу, поэтому даже один поток справляется с большим объемом задач.

Можно ли взять лучшее из двух миров? Использовать многопоточность вместе с EventLoop?

Можно! Один поток Redis не использует все доступные ядра процессора, поэтому добавить десяток потоков - вполне рабочая идея.

Такую схему используют KeyDB и DragonflyDB. На сайте публикуют бенчмарки, где они обходят Redis в 5-25 раз. 25 раз звучит слишком мощно, но про 5-10 раз можно верить.

Почему чаще используется Redis, а не более быстрые альтернативы?

Потому что Redis появился в 2009, используется на сотнях проектов и закрепился в сознании как базовое решение для кэша. Подводные камни известны, инфраструктура налажена, куча статей и докладов.

KeyDB и DragonflyDB - свежие БД пирожки. Один вышел в 19 году, другой в 22. На конференциях особо не светились, громких кейсов внедрения пока нет.

Энтерпрайз мир тяжело принимает новые технологии. Плюс не всегда нужно лучшее решение, иногда достаточно хорошего😊

BY Java: fill the gaps


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/java_fillthegaps/612

View MORE
Open in Telegram


Java: fill the gaps Telegram | DID YOU KNOW?

Date: |

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Java: fill the gaps from nl


Telegram Java: fill the gaps
FROM USA